Mesoporous silicas with tunable morphology for the immobilization of laccase.

نویسندگان

  • Victoria Gascón
  • Isabel Díaz
  • Carlos Márquez-Álvarez
  • Rosa M Blanco
چکیده

Siliceous ordered mesoporous materials (OMM) are gaining interest as supports for enzyme immobilization due to their uniform pore size, large surface area, tunable pore network and the introduction of organic components to mesoporous structure. We used SBA-15 type silica materials, which exhibit a regular 2D hexagonal packing of cylindrical mesopores of uniform size, for non-covalent immobilization of laccase. Synthesis conditions were adjusted in order to obtain supports with different particle shape, where those with shorter channels had higher loading capacity. Despite the similar isoelectric points of silica and laccase and the close match between the size of laccase and the pore dimensions of these SBA-15 materials, immobilization was achieved with very low leaching. Surface modification of macro-/mesoporous amorphous silica by grafting of amine moieties was proved to significantly increase the isoelectric point of this support and improve the immobilization yield.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the Diffusion Properties of Pseudomorphic MCM-41 Materials by PFG NMR

1. Introduction Ordered mesoporous silicas such as micelle-templated silicas (MTS) feature unique textural properties in addition to their high surface area: narrow mesopore size distributions, controlled pore size and connectivity make them particularly suitable for chromatographic applications (size exclusion chromatography, HPLC and capillary gas chromatography). In these applications, the p...

متن کامل

Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds.

A novel magnetically separable laccase immobilized system was constructed by adsorbing laccase into bimodal carbon-based mesoporous magnetic composites (CMMC). A large adsorption capacity (491.7 mg g(-1)), excellent activity recovery (91.0%) and broader pH and temperature profiles than free laccase have been exhibited by the immobilized laccase. Thermal stability was enhanced to a great extent ...

متن کامل

The immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme

The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...

متن کامل

The immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme

The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...

متن کامل

Immobilization of a molybdenum complex with tetradentate ligand on mesoporous material MCM-41 as catalyst for epoxidation of olefins

Covalent grafting of MCM-41 with 3-chloropropyl trimethoxysilane and subsequent reaction respectively with acacdien and complexation with MoO2(acac)2 afforded MoO2acacdien@MCM-41. X-ray diffraction and nitrogen sorption analyses revealed the preservation of the textural properties of the support as well as accessibility of the channel system despite sequential reduction in surface area, pore vo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 2014